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Letter to the Editor 

On a Conjecture in Multidimensional Quadrature* 

In a short note [I] published in this journal in 1973, Isenberg has suggested a 
conjecture about the nature of the asymptotic expansion for the error functional 
relating to multidimensional quadrature when the integrand function is singular 
at a point. Recent work by one of us and numerous experiments by the other have 
confirmed that this conjecture is incorrect in general. 

The main purpose of this note is simply to set the record straight, for the benefit 
of readers of Isenberg’s note who plan to use methods based on an invalid con- 
jecture, with the consequent unnecessary expense. In passing we draw attention 
to some other errors in the note and to the misleading manner in which some of the 
numerical results are presented. A derivation of the correct results is presented 
elsewhere (Lyness [3]) and a discussion of the computational aspects of methods 
based on these results is published [5]. Consequently, this letter is of immediate 
interest only to readers familiar with Isenberg’s note. It could well be ignored by 
other readers. 

Isenberg denotes by Z(c0) the value of an exact d-dimensional integral over a 
hypercube and defines Z(n) to be the approximation to Z(co) obtained by dividing 
the hypercube into na subregions and applying the same quadrature formula to 
each subregion. He states his conjecture as follows: “The asymptotic form of the 
behavior of Z(n) is 

Z(n) = Z(co) + f A,/ne+T + other terms. (1) 
T=o 

For large n the ‘other terms’ are negligible compared with z.,“=, Ar/na+T. The 
value of 01 is determined by estimating the contribution to the integral of a sub- 
region surrounding the singular point.” 

This conjecture is immediately implausible as it does not reduce to standard 
results, see e.g., Lyness and Ninham [2] in the one-dimensional case. In fact, we 
have now shown that the true expansion for a wide class of functions which 
includes those considered by Isenberg whose singularity is at a vertex is 

(2) 

* Work performed under the auspices of the U.S. Energy Research and Development Ad- 
ministration. 
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the order of the remainder coinciding with that of the first omitted term. However 

c, = 0, 01 # integer, (3) 
and if the quadrature rule is symmetric and of polynomial degree p 

B, = C, = 0, s odd, 

B, = C, = 0, s <P. 
(4) 

The class of integrand functions for which (2) is valid includes those with singu- 
larities at a vertex of type @, where r is a distance measured from that vertex. 
Logarithmic singularities such as ~6 In /I give rise to additional terms D,(ln n)2/ns 
when /3 is an integer. The overall situation is further complicated by the occasional 
vanishing of some coefficients C, and D, when the integrand function has certain 
properties some of which are related to symmetry. A full discussion of the error 
functional expansion when these singularities are algebraic or logarithmic in 
nature is included in Lyness [3]. The corresponding situation with regard to 
essential singularities is not known to the authors. 

The value of an expansion of this type is that after computing Z(n) for several 
values of it, the results can be extrapolated to produce an estimate for Z( cc), 
which is much more accurate than any of the individual approximations Z(n). 
This is done by successively eliminating the low-order terms in the expansion for 
the error, Z(n) - Z(cc), by means of linear combinations of the Z(n)‘s. To do this, 
it is only necessary to know the powers of n that occur with nonzero coefficients 
in the expansion. It is not necessary to know the numerical values of these coeffi- 
cients. Romberg Integration consists of doing this on the basis of the Euler 
Maclaurin asymptotic expansion. 

Isenberg illustrates his conjecture with the following two examples: 

(1) 12 = J’,’ Jo1 (2 _ $i dyy2)li2 ’ 

(2) Z2 = s,’ Jo1 Jo1 (1 - 3z2 
x2 + y2 + z2 

)” dx dy dz. 

Application of his conjecture leads to the asymptotic expansions given in his paper, 
namely, 

Z2(4 = Z2(~) + ,c, & + .-*v 

z&z> = Z3(co) + f & + *.’ . 
5=0 

The numerical results show rather good convergence of the extrapolated values. 
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The given asymptotic expansion (7) is correct for Z, . The reason is that this 
function possesses some unusual symmetry properties that cause the terms B, in 
the usual asymptotic expansion (2) to drop out. Seemingly minor changes to this 
integrand function (5) such as changing 2 to 3, or $ to 9, or multiplying by x 
destroy these symmetry properties invalidating asymptotic expansion (7). We have 
searched for other integrand functions for which asymptotic expansion (7) is valid. 
The only ones we have found are trivially related to (5). This situation leads us 
to believe that Isenberg tested his conjecture using only an extremely limited class 
of integrand functions. 

The correct expansion for I&) is 

Z,(n) = Z3(a3) + 4$ + y 2 + o(n-*~). 
7=3 

The expansion (8) conjectured for Z,(n) is not incorrect. It contains all of the correct 
terms. This is the reason the numerical results appear quite good.But it also contains 
extra terms Aqn-4, A@, A,n-‘,... whose coefficients are actually zero. The first 
extrapolated value Z2,d co), which corresponds to the elimination of A, from the 
error expansion with n = 10 and n = 9 is accurate to 4 more decimal places than 
Z1,l,(co). This happens because the error in Z,,l,(co) is O(K~) and the error in 
Z,,,,(co) is O(n-g) instead of O(n-4) as conjectured. The elimination of the non- 
existent terms ~t,n-~ and A,n+ leading to extrapolants Z&co) and Z4,J co) does 
not diminish the accuracy of these estimates for the integral, however, it also does 
not improve the accuracy very much. Use of the correct expansion would allow 
equally accurate estimates for Z, to be computed at significantly lower cost. 

The results of the numerical experiments on I, and Z3 are presented in the form 
of three tables. The notation used for these tables is correctly explained in the text, 
but is grossly misleading in one respect. For example, in [I, Table II], the third 
extrapolated value listed, i.e., Z&co) is accurate to nine decimal places. The 
number of function values required to compute I,,,,( co) is not listed, but a cursory 
glance would leave the impression that it might be 4104 or perhaps 4104 + 2325 + 
1216. In fact it is 19,000 + 13,831 + 9728. The reason is that these results refer 
not to extrapolation in a natural order but to a situation in which one chooses 
n = 10,9, 8,... successively. Perhaps the results would have been more easily 
interpreted if the columns labeled n, Z(n) and n, had been inverted. 

There is also a discrepancy concerning which quadrature rule was used to obtain 
the results reported in [ 1, Table II]. The text [ 1, p. 4201 claims that it was a 19 point 
quadrature formula due to Hammer and Stroud. The reference given is to C, : 5-3 
on p. 231 of Stroud (see our [4]). In fact, C, : 5-3 is on p. 232, [4], is due to Stroud 
only, and uses 37 points. A 19 point rule due to Hammer and Stroud is on p. 231 
[4], and is denoted C, : 5-2. Our calculations using this rule did not duplicate 
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the results reported. After some testing we found that the numbers given in 
[l, Table II] were generated using C, : 5-9 in [4, p. 2341. This is a 27 point rule, 
and therefore all function value counts in [l, Table II] are incorrect and should 
be increased by a factor 27/19, i.e., the counts listed are about 30 % low. 

In conclusion, we should like to emphasize that these errors in [I] while signi- 
ficant, are errors in detail. As such they can cause endless trouble. For example a 
prospective user, finding that a method based on the previously conjectured 
expansion is inefficient and finding that the numerical results given in [l] are 
incorrect, may well be tempted to abandon altoghether the use of extrapolation 
in his problem. This might be a pity. In our opinion the underlying concept of the 
paper, namely, there exist expansions of this general nature that can be used to 
great advantage in multidimensional numerical quadrature, is quite valid. We 
urge users with these types of problems not to overlook the possibility of employing 
this type of approach simply because some vital details were presented incorrectly. 
The basic purpose of this letter is simply to pinpoint these errors, so that prospective 
users may use this approach where valid with confidence. 
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